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Darboux's problem of quadratic integrals 
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NC 27514, USAt and Open University, Walton Hall, Milton Keynes MK7 6AA, UK 

Received 27 June 1983 

Abstract. The problem of determining all standard classical Hamiltonians in two dimensions 
with Euclidean metric which admit constants of motion quadratic in the momenta is 
resolved. Several general results are given which make it obvious that the systems found 
do possess such integrals. 

1. Introduction 

In this note I wish to resolve a problem which was first considered, it seems, by Darboux 
(1901). Quite simply the problem may be stated as follows: suppose that H is a 
Hamiltonian function for a system of two degrees of freedom and that H has the form 
given by 

H = ! ( p :  + p $ ) +  V ( x ,  Y) ;  

then determine all V for which there is a constant of motion quadratic in the momenta 
besides H itself. Darboux examined the problem and gave a partial solution but in 
the classical vein ignored certain exceptional cases. A similar discussion may be found 
in Whittaker (1937). 

Before embarking on the problem above, I want to state several general results 
which allow certain constants of motion to be written down directly by examining the 
form of the Hamiltonian. These are, I think, interesting in their own right but have 
the added advantage that two of them will corroborate our computations; they embrace 
all possible solutions to the problem. 

2. Results guaranteeing existence of certain integrals 

For this section we shall suppose that we are working on a 2m-dimensional space with 
coordinates ( x ' , p , ) .  Here and throughout I employ the notation of classical tensor 
calculus with a,,, summation convention etc. Also { ,} denotes the Poisson bracket of 
functions. 

Proposition 2.1. Suppose H and f are functions of (xi, pi) and that {H,  f}  = 0 and 
{ p iaH/ap i ,  f} = 0; then {H,  p i a f l a p , }  = 0. 
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Although this may look very coordinate dependent it is in fact intrinsic because the 
vector field pla/dp, is the canonical radial vector field. It is easily proved from the  
formula of differential geometry 

W X ,  Y)=x(Y,  e) -  Y(X, e ) - ( [x ,  Y ] ,  e )  

where 8 is a one-form and X. Y vector fields. 

Proposition2.2. Supposethat Hisafunct ionof  t h e f o r m H = ( A + B ) / ( P +  Q) with 

{ A ,  B }  = {P, Q} = {A, Q}‘= {P, B }  = 0. 

Then f = ( A Q -  B P ) / ( P +  Q) is a constant of motion. This is easily proven by using 
the derivation properties of the Poisson bracket. 

Proposition 2.3. Suppose that H = $ p 2  + e ( x )  +f(x) where f is an arbitrary function 
and e is homogeneous of degree minus two, i.e. satisfies x . V ( e )  + 2 e  = 0. Then E 
is a constant of motion for H where 

E = x 2 p 2 - ( x * p ) ’ + 2 x 2 e .  

Again the proof is a straightforward calculation. 

3. Darboux’s problem 

Although it has been discussed several times before, I d o  not think that the problem 
posed earlier has ever been completely resolved (Darboux 1901, Whittaker 1937, 
Makarov et a1 1967). We  have 

H = t6,,PlP, + V ( x ) ,  1 =G i, j =G 2 .  

For a quadratic constant of motion f ,  it suffices to  take f in the form f = A,,p,p, + A 
where A,,, A are functions of the x’s only (it is not difficult to see that a linear term 
in the p’s itself must separately commute with H so its inclusion adds nothing new). 
The condition { H ,  f} = 0 gives two equations the first of which is 

A(i1.k) =0. ( 3 . 1 ~ )  

This defines A as a Killing tensor of the metric: in two dimensions these tensors form 
a six-dimensional vector space of quadratic polynomials in x and y .  The second 
condition is 

A,, = 2 V, ,A,. (3.16) 

Integrability conditions on A yield 

Ai]V.lk-Ak]vji+ \’,](Ai:,& - A k ] , i )  =o .  (3.2) 

Here, x = XI, y = xz so ( 3 . 2 ) ,  since A,, is Killing, gives for constants a, b,, bZ, c,, c2 ,  c3 

( a x y  + b , x  + b 2 y -  c3)( v,, - v,,, - ( a ( x ’ -  y 2 )  + 2 6 , x - 2 b 1 y -  C] + c2) v,, 
+ 3 ( a y +  b, )  v, - 3 ( a x  + b2) v, = 0. (3.3) 
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By performing canonical transformations which leave p ;  +p’,  invariant, (3.3) may 
be reduced to four different cases which are 

xy (  vxx- v,,)-(x2-y2-c1+c2)v,y+3yv,-3xvy=o, (3.4) 

x y  ( v,, - V,,) - ( xz - y 2 )  v,, + 3 y v, - 3x v, = 0 ,  

( x  + y )  ( v x x  - v,, 1 - (x  - y vx, + 3 v, - 3 vy = 0, 

c3( v,, - V,,) + (c2 - c1) v,, = 0. 

(3.5) 

(3.6) 

(3.7) 

In (3.4) it is assumed that c2 = c1 - c2 # 0 and in (3.7) that not both c3, c2- c1 are zero 
as the corresponding constant of motion in that case is merely the Hamiltonian itself. 

Equation (3.5) may be solved directly to give 

~ = e ( x , y ; - 2 ) + f ( x ’ + y ~ )  

where f is an arbitrary function and e ( x ,  y ;  - 2 )  indicates a homogeneous function of 
degree minus two. Proposition (2 .3 )  gives the corresponding integral as 

( 3 . 8 )  ( ypx - XP,  I 2  + 2 ( x 2  + y ’) e. 

For (3.4) define the canonical transformation 

x = u v / c ,  

P x  = 

y = c- ’ [ (u2-  c2)(c2- u2)]”2, 

c u [ ( u 2 -  c 2 ) l ( c 2 -  U 2 ) y 2 p ,  + c u [ ( c 2 -  u 2 ) / ( u 2 -  C2)p2pL 
u 2 [ ( u 2 - c 2 ) / ( c 2 -  v 2 ) ] 1 / 2 +  u2[ (c2-  u2)/(u2-c2)]1’2 ’ 

C U P ,  - cup, 
p y  = u2[(c2- , 2 ) / (u2 -2 ) ]1 /2+ v2[(u2-c2)/(c2-v2)]”2‘  

In these coordinates the solution to (3.4) is 

V = ( f ( u ) - g ( u ) ) / ( u 2 -  u 2 )  for arbitrary functions f and g. 

The Hamiltonian is 

2H = ( u 2 - v 2 ) - ’ [ ( u 2 - c 2 ) p :  +2 f (u ) ]+(u2-u ’ ) - ’ [ ( c2 -u2)p t  - 2 g ( u ) ] .  (3.9) 

From proposition (2 .2)  the corresponding constant of motion is 

u 2  U 2  
[ ( u 2 - c 2 ) p t ,  +2f(u)]+- u2-  u 2  [ ( c2 -  u 2 ) p ?  - 2 g ( u ) ] .  (3.10) u 2 -  v 2  

Likewise for (3.6) define the canonical transformation 

U = [ 2 ( x 2 + y 2 ) ] ’ / 2 + x + y ,  v = [ 2 ( x 2 +  y 2 ) ] l ’ 2 -  ( x  + y ) ,  
2 112- { M X 2 + Y  11 2 y ~ p x - { [ 2 ( x 2 + y ~ ) ] ” 2 - 2 x } p ,  

4(x - y )  
P u  = 

{ [ 2 ( x 2 + y 2 ) 1 1 ~ 2 + 2 y ~ P , + ~ [ 2 ( x 2 + Y  2 11 1 /2  +2X)P, 
P L  = 

4 ( X - Y )  
The solution to (3.6) is 

V = ( g ( u ) + h ( v ) ) / ( u + t ‘ )  for arbitrary functions g, h. 
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The Hamiltonian may be written as 

H =  ( U +  u)-1(4up:+g(u))+(u+ u)-’(4upt+ h ( u ) )  

and again by proposition (2.2) the corresponding constant of motion is 

(3.11) 

It remains only to discuss (3.8). There are a variety of cases depending on the values 
of c1, c2, cg. However, in each case there is a canonical coordinate system ( x ’ ,  y’, p i ,  p s )  
so that the Hamiltonian may be written as 

H=$p:2+ V , ( x ’ ) + $ p f +  V , (y ’ )  (3.12) 

for some functions V I ,  V2.  Thus the Hamiltonian is additively separable and the 
constants of motion are obvious. It is interesting to observe that proposition (2.2) 
also applies to (3.12) and so we have established our claim that together proposition 
(2.2) and proposition (2.3) completely characterise all Hamiltonians with two degrees 
of freedom which admit quadratic integrals in addition to the Hamiltonian itself. 
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